目的 建立固公果根药材的超高效液相色谱串联四极杆-静电场轨道阱质谱(UPLC-Q-Exactive Orbitrap-MS)指纹图谱,并研究其与自由基清除活性的谱效关系。方法 采用UPLC-Q-Exactive Orbitrap-MS建立固公果根的指纹图谱,评价指纹图谱相似度,结合热图分析,对其中的19个共有峰进行指认;使用1,1-二苯基-2-三硝基苯肼(DPPH)法评价固公果根的抗氧化活性,结合灰色关联度分析(grey relational analysis,GRA)研究谱效关系。结果 建立了固公果根的UPLC-Q-Exactive Orbitrap-MS指纹图谱,选择峰面积>1%的19个色谱共有峰,通过对照品比对法、数据库、参考文献等方法鉴定前述色谱峰。19个色谱峰的热图分析和DPPH抗氧化灰色关联度结果显示,面积颜色变动较大峰为2、4、8、14、15、17,谱效关系表明11、18、17、19、8、6、16、12、1、5、7、15号峰是与抗氧化活性关联较大的正相关峰。各取排名前五相交得以下9个化学成分作为质量评价指标:峰2(儿茶素)、峰4(表儿茶素)、峰8[(+)-喹色亭酚-(4β,8)-表儿茶素]、峰11(鞣花酸)、峰14(野蔷薇苷)、峰15(刺梨苷)、峰17(委陵菜酸)、峰18(蔷薇酸)和峰19(皂皮酸)。结论 固公果根抗氧化活性是酚类和三萜皂苷类等多成分联合效应的结果,为药材质量控制提供更全面的参考。
Abstract
OBJECTIVE To establish the UPLC-Q-Exactive Orbitrap-MS fingerprint of Rosa odorata Sweet var. gigantean root and study the spectrum-effect relationship of its free radical scavenging activity. METHODS The fingerprint of Rosa odorata Sweet var. gigantean root was established by UPLC-Q-Exactive Orbitrap-MS method, the similarity of the fingerprint was evaluated, and 19 common peaks were evaluated by heat map analysis. The antioxidant activity of Rosa odorata Sweet var. gigantean root was evaluated by1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) method, and the spectrum-effect relationship was studied by grey correlation analysis (grey relational analysis, GRA). RESULTS The UPLC-Q-Exactive Orbitrap-MS fingerprint of Rosa odorata Sweet var. gigantean root was established, and 19 common chromatographic peaks with Area %>1% were selected, and the chromatographic peaks were identified by reference method, database and reference. According to the heat map analysis of 19 peaks and the grey correlation degree of DPPH oxidation resistance, the heat map analysis of 19 peaks showed that the peaks with large area color changes were 2, 4, 8, 14, 15, 17. The spectrum-effect relationship showed that peaks 11, 18, 17, 19, 8, 6, 16, 12, 1, 5, 7 and 15 were positively correlated with antioxidant activity. The following nine peaks were selected from the top five as quality evaluation indexes, Peak 2 (catechin), Peak 4 (epicatechin), Peak 8 [(+)-fisetinidol-(4β, 8)-epicatechin], Peak 11 (ellagic acid), Peak 14 (rosamultin), Peak 15 (kaji-ichigoside F1), Peak 17 (2α, 3β, 19α-trihydroxyurs-12-en-28-oic acid), Peak 18 (euscaphic acid), Peak 19 (quillaic acid). CONCLUSION The antioxidant activity of Rosa odorata Sweet var. gigantean root is the result of the combined effect of multi-components such as phenols and triterpenoid saponins, which provides a more comprehensive reference for the quality control of medicinal materials.
关键词
固公果根 /
超高效液相色谱串联四极杆-静电场轨道阱质谱 /
指纹图谱 /
1,1-二苯基-2-三硝基苯肼抗氧化活性 /
谱效关系
{{custom_keyword}} /
Key words
Rosa odorata Sweet var. gigantean root /
UPLC-Q-Exactive Orbitrap-MS /
fingerprint pectrum /
DPPH antioxidant activity /
spectrum-effect relationship
{{custom_keyword}} /
中图分类号:
R282
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Health Department of Yunnan Province, Drug Standards of Yunnan Province (1996 edition)[云南省药品标准(1996年版)][M]. Yunnan: Yunnan University Press, 1996 (25):70-71.
[2] GAO N Y. The effect and mechanism of the extract of Rose odorata Sweet var. gigantean on experimental ulcerative colitis based on the Nrf2 pathway[D]. Guangdong: Guangdong Pharmaceutical University, 2018.
[3] WANG C L. Research on the astringent Intestinal antidiarrheal activeingredient of Rose odorata Sweetvar.gigantean root[D]. Tianjin: Tianjin University of Chinese Medical, 2018.
[4] ZHAO Y M, LIU D L. Phenolic acids in Rose odorata Sweetvar.gigantean root[C]. Proceedings of CCS 9th National Symposium on Natural Product Chemistry (第九届全国天然有机化学学术会议论文集), Haikou: Chinese Chemical Society, 2012.
[5] MA S Z, QIN H Y, LONG F, et al. Identification and fragmentation regularity of polyphenol compounds from Galla Quercina by UPLC-MS/MS[J]. Chin Tradit Herb Drugs (中草药), 2017, 48(22): 4632-4637.
[6] WU J, ZHANG Z Q, YU H H, et al. Research progress on chemical constituents and pharmacological activities of Potentilla[J]. China J Chin Mater Med (中国中药杂志), 2022, 47(6): 1509-1538.
[7] ZENG B, LIU H M, LIU X M, et al. Application of UPLC-Q-Exactive Orbitrap MS technology in the analysis of Traditional Chinese medicine[J]. J Chin Med Mater (中药材), 2020, 43(9): 2312-2318.
[8] CUI X M, DONG M Z, REN H, et al. Chemical constituents of Zhengxin Jiangzhi tablets based on UHPLC-Q-exactive orbitrap MS[J]. Chin Pharm J(中国药学杂志), 2022, 57(17):1460-1477.
[9] AN Y, SONG G, LIU D, et al. Analysis of the main constituents of Changshu tablet and its spasmolysis effect against contraction induced by acetylcholine in the rat-isolated intestinal smooth muscle[J]. Pak J Pharm Sci, 2018, 31(3): 835-840.
[10] MA R, LIU D L, YIN J. Determination of triterpenes from the root of Rose odorata Sweet var. gigantea (Coll.etHemsl.)Rehd. et Wils by colorimetry[J]. Acta Acad Med CPAPF (武警医学院学报), 2010, 19(2): 114-116.
[11] PEI Y Q, XU Z C, WANG Y T, et al. Identification of chemical composition of Sanguisorba of ficinalis L. and its major metabolites in rats by UHPLC-Q-TOF/MS.[J]. J Nanjing Univ Tradit Chin Med (南京中医药大学学报), 2021, 37(6): 897-907.
[12] XU W T, HUO Z P, LEI L, et al. Chemical constituent cluster of decoction of Sanguisorbae Radix by HPLC-IT-TOF/MS[J]. Chin Tradit Herb Drugs (中草药), 2018, 49(6): 1277-1288.
[13] GAO J R, YANG B L. On the qing and zhuo qi of Yi medicine[J]. J Med Pharm Chin Minor (中国民族医药杂志), 2017, 23(7): 4-5.
[14] LIU K K, WANG J. Advances in the mechanism of distant organ ischemia-reperfusion induced intestinal injury[J]. Shandong Med (山东医药), 2020, 60(20): 103-106.
[15] AN Y, ZHAO Y M, ZHANG Y, et al. Determination of total tannin in different parts of Rose odorata Sweet var. gigantean (Coll.et Hemsl.) Rehd.et Wils[J]. J Log Univ PAPF (Med Sci)(武警后勤学院学报医学版), 2014, 23(9): 721-724.
[16] BERNATONIENE J, KOPUSTINSKIENE D. The Role of Catechins in Cellular Responses to Oxidative Stress[J]. Molecules, 2018, 23(4): 965.
[17] WANG K F, YUAN Y B, WU L F, et al. Research progress in condensed tannins[J]. Chin Tradit Herb Drugs (中草药), 2013, 44(12): 1687-1699.
[18] OLECH M, ZIEMICHÓD W, NOWACKA-JECHALKE N. The Occurrence and Biological Activity of Tormentic Acid—A Review[J]. Molecules, 2021, 26(13): 3797.
[19] SHI C, ZHAN L, WU Y, et al. Kaji-Ichigoside F1 and Rosamultin Protect Vascular Endothelial Cells against Hypoxia-Induced Apoptosis via the PI3K/AKT or ERK1/2 Signaling Pathway[J]. Oxid Med Cell Longev, 2020, 2020: 6837982.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点研发计划项目资助(2019YFC1711500);中国食品药品检定研究院中青年发展研究基金课题资助(2022A5-1020052210205)
{{custom_fund}}